Мультивибратор: подробно простым языком. Принцип работы мультивибратора на транзисторах Мультивибратор на транзисторах с регулируемой частотой схема

Мультивибратор (от латинского много колеблю) - нелинейное устройство, преобразующее постоянное напряжение питания в энергию импульсов почти прямоугольной формы. В основе мультивибратора лежит усилитель с положительной обратной связью.

Различают мультивибраторы автоколебательные и ждущие. Рассмотрим первый тип.

На рис. 1 приведена обобщенная схема усилителя с обратными связями.

Схема содержит усилитель с комплексным коэффициентом усиления к=Ке-iк, цепь ООС с коэффициентом передачи m, и цепь ПОС с комплексным коэффициентом передачи В=е-i. Из теории генераторов известно, что для возникновения колебаний на какой-либо частоте необходимо что бы на ней выполнялось условие Вк>1. Импульсный периодический сигнал содержит совокупность частот, образующих линейчатый спектр (см.1-ю лекцию). Т.о. для генерации импульсов необходимо выполнения условия Вк>1не на одной частоте, а в широкой полосе частот. Причем, чем более короткий импульс и с более короткими фронтами сигнал требуется получить, для более широкой полосы частот требуется выполнения условия Вк>1. Приведенное условие распадается на два:

условие баланса амплитуд - модуль общего коэффициента передачи генератора должен превышать 1 в широком диапазоне частот - К>1;

условие баланса фаз - суммарный сдвиг фаз колебаний в замкнутом контуре генератора в том же диапазоне частот должен быть кратен 2 - к + =2n.

Качественно процесс скачкообразного роста напряжения происходит следующим образом. Пусть в некоторый момент времени в результате флюктуаций напряжение на входе генератора возросло на малую величину u. В результате выполнения обоих условий генерации на выходе устройства появится приращение напряжения: uвых=Вкuвх >uвх, которое передается на вход в фазе с исходным uвх. Соответственно это увеличение приведет к дальнейшему возрастанию выходного напряжения. Происходит лавинообразный процесс роста напряжения в широком диапазоне частот.

Задача построения практической схемы генератора импульсов сводится к подаче на вход широкополосного усилителя части выходного сигнала с разностью фаз =2. Поскольку один резистивный усилитель сдвигает фазу входного напряжения на 1800, то применяя два последовательно соединенных усилителя, можно удовлетворить условию баланса фаз. Условие баланса амплитуд будет выглядеть в этом случае следующим образом:

Одна из возможных схем, реализующий указанный метод, приведена на рис.2. Это схема автоколебательного мультивибратора с коллекторно-базовыми связями. В схеме используются два усилительных каскада. Выход одного усилителя связан со входом второго конденсатором С1, а выход последнего связан со входом первого - конденсатором С2.


Качественно работу мультивибратора рассмотрим с использованием временных диаграмм напряжений (эпюр), приведенных на рис. 3.

Пусть в момент времени t=t1 происходит переключение мультивибратора. Транзистор VT1 попадает в режим насыщения, а VT2 - в режим отсечки. С этого момента начинаются процессы перезарядки конденсаторов С1 и С2. До момента t1 конденсатор С2 был полностью разряжен, а С1 заряжен до напряжения питания Еп (полярность заряженных конденсаторов указана на рис.2). После отпирания VT1 начинается его зарядка от источника Еп через резистор Rк2 и базу отпертого транзистора VT1. Конденсатор заряжается практически до напряжения питания Еп с постоянной заряда

зар2 = С2Rк2

Поскольку С2 через открытый VT1 подсоединен параллельно VT2, то скорость его зарядки определяет скорость изменения выходного напряжения Uвых2.. Полагая процесс зарядки законченным когда Uвых2 = 0,9Uп, легко получить длительность

t2-t1= С2Rк2ln102,3С2Rк2

Одновременно зарядке С2 (начиная с момента t1) происходит перезарядка конденсатора С1. Его отрицательное напряжение, приложенное к базе VT2, поддерживает запертое состояние этого транзистора. Конденсатор С1 перезаряжается по цепи: Еп, резистор Rб2, С1, Э-К открытого транзистора VT1. корпус с постоянной времени

разр1 = С1Rб2

Так как Rб >>Rк, то и зар<<разр. Следовательно, С2 успевает зарядиться до Еп пока VT2 еще закрыт. Процесс перезарядки С1 заканчивается в момент времени t5, когда UC1=0 и начинает открываться VT2 (для простоты считаем, что VT2 открывается при Uбє=0). Можно показать, что длительность перезаряда С1 равна:

t3-t1 = 0,7C1Rб2

В момент времени t3 появляется коллекторный ток VT2, падает напряжение Uкэ2, что приводит к призакрыванию VT1 и, соответственно, к росту Uкэ1. Это приращение напряжение через С1 передается в базу VT2, что влечет дополнительное открытие VT2. Транзисторы переходят в активный режим, возникает лавинообразный процесс, в результате которого мультивибратор переходит в другое квазистационарное состояние: VT1 закрыт, VT2 - открыт. Длительность опрокидывания мультивибратора намного меньше всех других переходных процессов и ее можно считать равным нулю.

С момента t3 процессы в мультивибраторе пойдут аналогично описанному, следует лишь поменять местами индексы у элементов схемы.

Таким образом, длительность фронта импульса определяется процессами заряда конденсатора связи и численно равна:

Длительность нахождения мультивибратора в квазиустойчивом состоянии (длительность импульса и паузы) определяется процессом разряда конденсатора связи через базовый резистор и численно равна:

При симметричной схеме мультивибратора (Rк1 =Rк2 =Rк, Rб1 =Rб2 =Rб, С1=С2=С) длительность импульса равна длительности паузы, и период следования импульсов равен:

Т = и + п =1,4CRб

Сравнивая длительности импульса и фронта необходимо учесть, что Rб/Rк=h21э/s (h21э для современных транзисторов 100, а s2). Следовательно, длительность фронта всегда меньше длительности импульса.

Частота выходного напряжения симметричного мультивибратора не зависит от напряжения питания и определяется только параметрами схемы:

Для изменения длительности импульсов и периода их следования нужно варьировать величины Rб и С. Но возможности здесь невелики: пределы изменения Rб ограничены сбольшей стороны необходимостью сохранения открытого транзистора, с меньшей стороны - неглубокого насыщения. Изменять плавно величину С затруднительно даже в малых пределах.

Чтобы найти выход из затруднения обратимся к периоду времени t3-t1 на рис. 2. Из рисунка видно, что указанный интервал времени, а, следовательно, и длительность импульса можно регулировать изменяя наклон прямой разряда конденсатора. Этого можно добиться, подключая базовые резисторы не к источнику питания, а к дополнительному источнику напряжения Есм (см. рис. 4). Тогда конденсатор стремится перезарядиться не к Еп, а к Есм и крутизна экспоненты будет изменяться с изменением Есм.

Импульсы, генерируемые рассмотренными схемами, имеют большую длительность фронта. В ряде случаев эта величина становится неприемлемой. Для укорачивания ф в схему вводят отсекающие конденсаторы, как показано на рис.5. Конденсатор С2 заряжается в этой схеме не через Rз, а через Rд. Диод VD2, оставаясь закрытым, «отсекает» напряжение на С2 от выхода и напряжение на коллекторе возрастает практически одновременно с закрытием транзистора.

В мультивибраторах в качестве активного элемента можно использовать операционный усилитель. Автоколебательный мультивибратор на ОУ изображен на рис. 6.


ОУ охвачен двумя цепями ОС: положительной

и отрицательной

Хс/(Хс+R) = 1/(1+wRC).

Пусть генератор был включен в момент t0. На инвертирующем входе напряжение равно нулю, на неинвертирующем - равновероятно положительное или отрицательное. Для определенности возьмем положительное. За счет ПОС на выходе установится максимально возможное напряжение - Uвых m. Время установления этого выходного напряжения определяется частотными свойствами ОУ и можно положить его равным нулю. Начиная с момента t0 конденсатор С будет заряжаться с постоянной времени =RC. До момента времени t1 Uд = U+ - U- >0, и на выходе ОУ удерживается положительное Uвыхm. При t=t1 , когда Uд = U+ - U- = 0 выходное напряжение усилителя изменит свою полярность на - Uвых m. После момента t1 емкость С перезаряжается, стремясь к уровню - Uвых m. До момента t2 Uд = U+ - U- < 0, что обеспечивает квазиравновесное состояние системы, но уже с отрицательным выходным напряжением. Т.о. изменение знака Uвых происходит в моменты уравнивания входных напряжений на двух входах ОУ. Длительность квазиравновесного состояния системы определяется постоянной времени =RC, и период следования импульсов будет равен:

Т=2RCln(1+2R2/R1).

Мультивибратор, приведенный на рис.6 называется симметричным, т.к. времена положительного и отрицательного выходных напряжений равны.

Для получения несимметричного мультивибратора следует резистор в ООС заменить на схему, как показано на рис. 7. Разная длительность положительного и отрицательного импульсов обеспечена разными постоянными времени перезаряда емкостей:

R"C, - = R”C.

Мультивибратор на ОУ легко превратить в одновибратор или ждущий мультивибратор. Во-первых, в цепи ООС параллельно С подсоединим диод VD1, как показано на рис.8. Благодаря диоду схема имеет одно устойчивое состояние, когда напряжение на выходе отрицательно. Действительно, т.к. Uвых = - Uвых m, то диод открыт и напряжение на инвертирующем входе примерно равно нулю. В то время как напряжение на неинвертирующем входе равно

U+ =- Uвых m R2/(R1+R2)

и сохраняется устойчивое состояние схемы. Для генерации одного импульса в схему следует добавить цепь запуска, состоящую из диодаVD2, С1 и R3. Диод VD2 поддерживается в закрытом состоянии и может открыться только положительным входным импульсом, пришедшим на вход в момент времени t0. С открытием диода меняется знак и схема переходит в состояние с положительным напряжением на выходе. Uвых = Uвых m. После этого конденсатор С1 начинает заряжаться с постоянной времени =RC. В момент времени t1 напряжения на входя сравниваются. U- = U+ = Uвых m R2/(R1+R2) и =0. В следующий момент дифференциальный сигнал становится отрицательным и схема возвращается в устойчивое состояние. Эпюры приведены на рис. 9.

Применяются схемы ждущих мультивибраторов на дискретных и логических элементах.

Схема рассматриваемого мультивибратора аналогична рассмотренной ранее.

В этой статье я буду подробно расказывать как сделать мультивибратор, который является первой схемой чуть ли не каждого второго радиолюбителя. Как мы знаем, мультивибратором называют электронные устройства, генерирующие электрические колебания, близкие по форме к прямоугольной, что и отражено в его названии: "мульти - много", "вибро - колебание". Другими словами, мультивибратор - генератор прямоугольных импульсов релаксационного типа с резистивно - емкостными положительными обратными связями, использующий замкнутый в кольцо положительной обратной связи двухкакасдный усилитель. При работе мультивибратора в режиме автоколебаний вырабатываются периодически повторяющиеся импульсы прямоугольной формы. Частота генерируемых импульсов определяется параметрами времязадающей цепи, свойствами схемы и режимом ее питания. На частоту автоколебаний оказывает также влияние подключаемая нагрузка. Обычно мультивибратор применяется в качестве генератора импульсов относительно большой длительности, которые затем используются для формирования импульсов необходимой длительности и амплитуды.

Работа схемы мультивибратора

Симметричный мультивибратор на транзисторах

Схематически мультивибратор состоит из двух усилительных каскадов с общим эмиттером, выходное напряжение каждого из которых подается на вход другого. При подсоединении схемы к источнику питания Ек оба транзистора пропускают коллекторные точки - их рабочие точки находятся в активной области, поскольку на базы через резисторы RБ1 и RБ2 подается отрицательное смещение. Однако такое состояние схемы неустойчивое. Из-за наличия в схеме положительной обратной связи выполняется условие?Ку>1 и двухкаскадный усилитель самовозбуждается. Начинается процесс регенерации - быстрое увеличение тока одного транзистора и уменьшение тока другого транзистора. Пусть в результате любого случайного изменения напряжений на базах или коллекторах несколько увеличится ток IK1 транзистора VT1. При этом увеличится падение напряжения на резисторе RK1 и коллектор транзистора VT1 получит приращение положительного потенциала. Поскольку напряжение на конденсаторе СБ1 не может мгновенно измениться, это приращение прикладывается к базе транзистора VT2, подзапирая его. Коллекторный ток IK2 при этом уменьшается, напряжение на коллекторе транзистора VT2 становится более отрицательным и, передаваясь через конденсатор СБ2 на базу транзистора VT1, еще больше открывает его, увеличивая ток IK1. Этот процесс протекает лавинообразно и заканчивается тем, что транзистор VT1 входит в режим насыщения, а транзистор VT2 - в режим отсечки. Схема переходит в одно из своих временно устойчивых состояний равновесия. При этом открытое состояние транзистора VT1 обеспечивается смещением от источника питания Ек через резистор RБ1, а запертое состояние транзистора VT2 - положительным напряжением на конденсаторе СБ1 (Ucm = UБ2 > 0), который через открытый транзистор VT1 включен в промежуток база - эмиттер транзистора VT2.

Для сооружения мультивибратора нам из радиокомпонентов понадобятся:

1. Два транзистора типа КТ315.
2. Два электролитических конденсатора на 16в, 10-200микрофарад (Чем меньше емкость, тем чаще моргание).
3. 4 резистора номиналом: 100-500 ом 2 штуки (если вы ставите 100 ом, то схема будет работать даже от 2.5в), 10 ком 2 штуки. Все резисторы мощностью в 0.125 ватт.
4. Два не ярких светодиода (Любого цвета, кроме белого).


Печатная плата формата Lay6 . Приступим к изготовлению. Сама печатная плата имеет такой вид:

Припаивываем два транзистора, не перепутайте коллектор и базу на транзисторе - это частая ошибка.


Паяем конденсаторы 10-200 Микрофарад. Обратите внимание, что конденсаторы на 10 вольт крайне нежелательны для использование в этой схеме, если вы будете подавать питание 12 вольт. Помните, что у электролитических конденсаторов существует полярность!



Мультивибратор почти готов. Остается припаять светодиоды, и входные провода. Фото готового устройства выглядит примерно так:


И чтобы вам всё стало наглядно понятно, видеоролик работы простого мультивибратора:

На практике, мультивибраторы применяют в качестве генераторов импульсов, делителей частоты, формирователей импульсов, бесконтактных переключателей и так далее, в электронных игрушках, устройствах автоматики, вычислительной и измерительной техники, в реле времени и задающих устройствах. С вами был Boil-:D . (материал был приготовлен по запросу Демьян" a)

Обсудить статью МУЛЬТИВИБРАТОР

Электронные генераторы: мультивибратор. Назначение, принцип действия, применение.

Мультивибраторы

Мультивибратор представляет собой релаксационный генератор колебаний почти прямоугольной формы. Он является двухкаскадным усилителем на резисторах с положительной обратной связью, в котором выход каждого каскада соединен со входом другого. Само название "мультивибратор" происходит от двух слов: "мульти" - много и "вибратор" - источник колебаний, поскольку колебания мультивибратора содержат большое число гармоник. Мультивибратор может работать в автоколебательном режиме, режиме синхронизации и ждущем режиме. В автоколебательном режиме мультивибратор работает как генератор с самовозбуждением, в режиме синхронизации на мультивибратор действует извне синхронизирующее напряжение, частота которого определяет частоту импульсов, ну а в ждущем режиме мультивибратор работает как генератор с внешним возбуждением.

Мультивибратор в автоколебательном режиме

На рисунке 1 показана наиболее распространенная схема мультивибратора на транзисторах с емкостными коллекторно-базовыми связями, на рисунке 2 - графики, поясняющие принцип его работы. Мультивибратор состоит из двух усилительных каскадов на резиках. Выход каждого каскада соединен со входом другого каскада через кондеры С1 и С2.


Рис. 1 - Мультивибратор на транзисторах с емкостными коллекторно-базовыми связями

Мультивибратор, у которого транзисторы идентичны, а параметры симметричных элементов одинаковы, называется симметричным. Обе части периода его колебаний равны и скважность равна 2. Если кто забыл, что такое скважность, напоминаю: скважность - это отношение периода повторения к длительности импульса Q=T и /t и. Величина, обратная скважности называется коэффициентом заполнения. Так вот, если имеются различия в параметрах, то мультивибратор будет несимметричным.

Мультивибратор в автоколебательном режиме имеет два состояния квазиравновесия, когда один из транзисторов находится в режиме насыщения, другой - в режиме отсечки и наоборот. Эти состояния не устойчивые. Переход схемы из одного состояния в другое происходит лавинообразно из-за глубокой ПОС.


Рис. 2 - Графики, поясняющие работу симметричного мультивибратора

Допустим, при включении питания транзистор VT1 открыт и насыщен током, проходящим через резик R3. Напряжение на его коллекторе минимально. Кондер С1 разряжается. Транзистор VT2 закрыт и кондер С2 заряжается. Напряжение на кондере С1 стремится к нулю, а потенциал на базе транзистора VT2 постепенно становится положительным и VT2 начинает открываться. Напряжение на его коллекторе уменьшается и кондер С2 начинает разряжаться, транзистор VT1 закрывается. Далее процесс повторяется до бесконечности.

Параеметры схемы должны быть следующими: R1=R4, R2=R3, C1=C2. Длительность импульсов определяется по формуле:

Период импульсов определяется:


Ну а чтобы определить частоту, надо единицу разделить на вот эту вот хренотень (см. чуть выше).

Выходные импульсы снимаются с коллектора одного из транзисторов, причем с какого именно - не важно. Другими словами, в схеме два выхода.

Улучшение формы выходных импульсов мультивибратора, снимаемых с коллектора транзистора, может быть достигнуто включением разделительных (отключающих) диодов в цепи коллекторов, как показано на рисунке 3. Через эти диоды параллельно коллекторным нагрузкам подключены дополнительные резики R д1 и R д2 .

Рис. 3 - Мультивибратор с улучшенной формой выходных импульсов

В этой схеме после закрывания одного из транзисторов и понижения потенциалла коллектора подключенный к его коллектору диод также закрывается, отключая кондер от коллекторной цепи. Заряд кондера происходит через дополнительный резик R д, а не через резик в коллекторной цепи, и потенциал коллектора запирающегося транзистора почти скачком становится равным E к. Максимальная длительность фронтов импульсов в коллекторных цепях определяется в основном частотными свойствами транзисторов.

Такая схема позволяет получить импульсы почти прямоугольной формы, но её недостатки заключаются в более низкой максимальной скважности и невозможностью плавной регулировки периода колебаний.

На рисунке 4 приведена схема быстродействующего мультивибратора, обеспечивающая высокую частоту автоколебаний.

Рис. 4 - Быстродействующий мультивибратор

В этой схеме резики R2, R4 подключены параллельно кондерам С1 и С2, а резики R1, R3 ,R4, R6 образуют делители напряжения, стабилизирующие потенциал базы открытого транзистора (при токе делителя, большем тока базы). При переключении мультивибратора ток базы насыщенного транзистора изменяется более резко, чем в ранее рассмотренных схемах, что сокращает время рассасывания зарядов в базе и ускоряет выход транзистора из насыщения.

Ждущий мультивибратор

Мультивибратор, работающий в автоколебательном режиме и не имеющий состояния устойчивого равновесия, можно превратить в мультивибратор, имеющий одно устойчивое положение и одно неустойчивое положение. Такие схемы называются ждущими мультивибраторами или одновибриторами, одноимпульсными мультивибраторами, релаксационными реле или кипп-реле. Перевод схемы из устойчивого состояния в неустойчивое происходит путем воздействия внешнего запускающего импульса. В неустойчивом положении схема находится в течение некоторого времени в зависимости от её параметров, а затем автоматически, скачком возвращается в первоначальное устойчивое состояние.

Для получения ждущего режима в мультивибраторе, схема которого была показана на рис. 1, надо выкинуть пару деталюшек и заменить их, как показано на рис. 5.

Рис. 5 - Ждущий мультивибратор

В исходном устойчивом состоянии транзистор VT1 закрыт. Когда на вход схемы приходит положительный запускающий импульс достаточной амплитуды, через транзистор начинает проходить коллекторный ток. Изменение напряжения на коллекторе транзистра VT1 передается через кондер С2 на базу транзистора VT2. Благодаря ПОС (через резик R4) нарастает лавинообразный процесс, приводящий к закрыванию транзистора VT2 и открыванию транзистора VT1. В этом состоянии неустойчивого равновесия схема находится до тех пор, пока кондер С2 не разрядится через резик R2 и проводящий транзистор VT1. После разряда кондера транзистор VT2 открывается, а VT1 закрывается и схема возвращается в исходное состояние.

Блокинг-генераторы

Блокинг-генератор представляет собой однокаскадный релаксационный генератор кратковременных импульсов с сильной индуктивной положительной обратной связью, создаваемой импульсным трансформатором. Вырабатываемые блокинг-генератором импульсы имеют большую крутизну фронта и среза и по форме близки к прямоугольным. Длительность импульсов может быть в пределах от нескольких десятков нс до нескольких сотен мкс. Обычно блокинг-генератор работает в режиме большой скважности, т. е. длительность импульсов много меньше периода их повторения. Скважность может быть от нескольких сотен до десятков тысяч. Транзистор, на котором собран блокинг-генератор, открывается только на время генерирования импульса, а остальное время закрыт. Поэтому при большой скважности время, в течении которого транзистор открыт, много меньше времени, в течении которого он закрыт. Тепловой режим транзистора зависит от средней мощности, рассеиваемой на коллекторе. Благодаря большой скважности в блокинг-генераторе можно получить очень большую мощность во время импульсов малой и средней мощности.

При большой скважности блокинг-генератор работает весьма экономично, так как транзистор потребляет энергию от источника питания только в течении небольшого времени формирования импульса. Так же, как и мультивибратор, блокинг-генератор может работать в автоколебательном, ждущем режиме и режиме синхронизации.

Автоколебательный режим

Блокинг-генераторы могут быть собраны на транзисторах, включенных по схеме с ОЭ или по схеме с ОБ. Схему с ОЭ применяют чаще, так как она позволяет получить лучшую форму генерируемых импульсов (меньшую длительность фронта), хотя схема с ОБ более стабильна по отношению к изменению параметров транзистора.

Схема блокинг-генератора показана на рис. 1.

Рис. 1 - Блокинг-генератор

Работу блокинг-генератора можно разделить на две стадии. В первой стадии, занимающей большую часть периода колебаний, транзистор закрыт, а во второй - транзистор открыт и происходит формирование импульса. Закрытое состояние транзистора в первой стадии поддерживается напряжением на кондере С1, заряженным током базы во время генерации предыдущего импульса. В первой стадии кондер медленно разряжается через большое сопротивление резика R1, создавая близкий к нулевому потенциал на базе транзистора VT1 и он остается закрытым.

Когда напряжение на базе достигнет порога открывания транзистора, он открывается и через коллекторную обмотку I трансформатора Т начинает протекать ток. При этом в базовой обмотке II индуктируется напряжение, полярность которого должна быть такой, чтобы оно создавало положительный потенциал на базе. Если обмотки I и II включены неправильно, то блокинг-генератор не будет генерировать. Значится, концы одной из обмоток, неважно какой, необходимо поменять местами.

Если разобраться, вся электроника состоит из большого числа отдельных кирпичиков. Это транзисторы, диоды, резисторы, конденсаторы, индуктивные элементы. А уже из этих кирпичиков можно сложить всё, что угодно.

От безобидной детской игрушки издающей, например, звук «мяу», до системы наведения баллистической ракеты с разделяющейся головной частью на восемь мегатонных зарядов.

Одной из очень известных и часто применяющихся в электронике схем, является симметричный мультивибратор, который представляет собой электронное устройство вырабатывающее (генерирующее) колебания по форме, приближающиеся к прямоугольной.

Мультивибратор собирается на двух транзисторах или логических схемах с дополнительными элементами. По сути это двухкаскадный усилитель с цепью положительной обратной связи (ПОС). Это значит, что выход второго каскада соединён через конденсатор со входом первого каскада. В результате усилитель за счёт положительной обратной связи превращается в генератор.

Для того чтобы мультивибратор начал генерировать импульсы достаточно подключить напряжение питания. Мультивибраторы могут быть симметричными и несимметричными .

На рисунке представлена схема симметричного мультивибратора.

В симметричном мультивибраторе номиналы элементов каждого из двух плеч абсолютно одинаковы: R1=R4, R2=R3, C1=C2. Если посмотреть на осциллограмму выходного сигнала симметричного мультивибратора, то легко заметить, что прямоугольные импульсы и паузы между ними одинаковы по времени. t импульса (t и ) = t паузы (t п ). Резисторы в коллекторных цепях транзисторов не влияют на параметры импульсов, и их номинал подбирается в зависимости от типа применяемого транзистора.

Частота следования импульсов такого мультивибратора легко высчитывается по несложной формуле:

Где f - частота в герцах (Гц), С - ёмкость в микрофарадах (мкФ) и R - сопротивление в килоомах (кОм). Например: С = 0,02 мкФ, R = 39 кОм. Подставляем в формулу, выполняем действия и получаем частоту в звуковом диапазоне приблизительно равную 1000 Гц, а точнее 897,4 Гц.

Сам по себе такой мультивибратор неинтересен, так как он выдаёт один немодулированный «писк», но если элементами подобрать частоту 440 Гц, а это нота Ля первой октавы, то мы получим миниатюрный камертон, с помощью которого можно, например, настроить гитару в походе. Единственно, что нужно сделать, это добавить каскад усилителя на одном транзисторе и миниатюрный динамик.

Основными характеристиками импульсного сигнала принято считать следующие параметры:

    Частота . Единица измерения (Гц) Герц. 1 Гц – одно колебание в секунду. Частоты, воспринимаемые человеческим ухом, находятся в диапазоне 20 Гц – 20 кГц.

    Длительность импульса . Измеряется в долях секунды: мили, микро, нано, пико и так далее.

    Амплитуда . В рассматриваемом мультивибраторе регулировка амплитуды не предусмотрена. В профессиональных приборах используется и ступенчатая и плавная регулировка амплитуды.

    Скважность . Отношение периода (Т) к длительности импульса (t ). Если длина импульса равна 0,5 периода, то скважность равна двум.

Исходя из вышеприведенной формулы, легко рассчитать мультивибратор практически на любую частоту за исключением высоких и сверхвысоких частот. Там действуют несколько другие физические принципы.

Для того чтобы мультивибратор выдавал несколько дискретных частот достаточно поставить двухсекционный переключатель и пять шесть конденсаторов разной ёмкости, естественно одинаковые в каждом плече и с помощью переключателя выбирать необходимую частоту. Резисторы R2, R3 так же влияют на частоту и скважность и их можно сделать переменными. Вот ещё одна схема мультивибратора с подстройкой частоты переключения.

Уменьшение сопротивления резисторов R2 и R4 меньше определённой величины зависящей от типа применяемых транзисторов может вызвать срыв генерации и мультивибратор работать не будет, поэтому последовательно с резисторами R2 и R4 можно подключить переменный резистор R3, которым можно подобрат частоту переключений мультивибратора.

Практическое применение симметричного мультивибратора очень обширно. Импульсная вычислительная техника, радиоизмерительная аппаратура при производстве бытовой техники. Очень много уникальной медицинской техники построено на схемах, в основе которых лежит тот самый мультивибратор.

Благодаря исключительной простоте и невысокой стоимости мультивибратор нашёл широкое применение в детских игрушках. Вот пример обычной мигалки на светодиодах .

При указанных на схеме величинах электролитических конденсаторов С1, С2 и резисторов R2, R3 частота импульсов будет 2,5 Гц, а значит, светодиоды будут вспыхивать примерно два раза в секунду. Можно использовать схему, предложенную выше и включить переменный резистор совместно с резисторами R2, R3. Благодаря этому можно будет посмотреть, как будет изменяться частота вспышек светодиодов при изменении сопротивления переменного резистора. Можно поставить конденсаторы разных номиналов и наблюдать за результатом.

Будучи ещё школьником, я собирал на мультивибраторе переключатель ёлочных гирлянд. Всё получилось, но вот когда подключил гирлянды, то мой приборчик стал переключать их с очень высокой частотой. Из-за этого в соседней комнате телевизор стал показывать с дикими помехами, а электромагнитное реле в схеме трещало, как из пулемёта. Было и радостно (работает же!) и немного страшновато. Родители переполошились ненашутку.

Такая досадная промашка со слишком частым переключением не давала мне покоя. И схему проверял, и конденсаторы по номиналу были те, что надо. Не учёл я лишь одного.

Электролитические конденсаторы были очень старые и высохли. Ёмкость их была небольшая и совсем не соответствовала той, что была указана на их корпусе. Из-за низкой ёмкости мультивибратор и работал на более высокой частоте и слишком часто переключал гирлянды.

Приборов, которыми можно было бы измерить ёмкость конденсаторов в то время у меня не было. Да и тестером пользовался стрелочным, а не современным цифровым мультиметром .

Поэтому, если ваш мультивибратор выдаёт завышенную частоту, то первым делом проверяйте электролитические конденсаторы. Благо, сейчас можно за небольшие деньги купить универсальный тестер радиокомпонентов , которым можно измерить ёмкость конденсатора.

Мультивибратор - прибор для создания несинусоидальных колебаний. На выходе получается сигнал любой другой формы, кроме синусоидальной волны. Частота сигнала в мультивибраторе определяется сопротивлением и емкостью, а не индуктивностью и емкостью. Мультивибратор состоит из двух каскадов усилителя, выход каждого каскада подается на вход другого каскада.

Принцип действия мультивибратора

Мультивибратор может создавать волну почти любой формы, в зависимости от двух факторов: сопротивления и емкости каждого из двух каскадов усилителя и от того, откуда в цепи снимается выход.

Например, если сопротивление и емкость двух каскадов равны, один каскад проводит 50% времени и другой каскад проводит 50% времени. Для обсуждения мультивибраторов в этом разделе предполагается, что сопротивление и емкость обоих каскадов равны. Когда эти условия существуют, выходной сигнал является прямоугольной волной.

Бистабильные мультивибраторы (или «флип-флоп») имеют два устойчивых состояния. В устойчивом состоянии один из двух каскадов усилителя находится в состоянии проводимости, а другой каскад не проводит. Для того, чтобы перейти от одного устойчивого состояния к другому, бистабильный мультивибратор должен получить внешний сигнал.

Этот внешний сигнал называется внешним импульсом триггера. Он инициирует переход мультивибратора из одного состояния в другое. Другой триггерный импульс необходим, чтобы перевести цепь обратно в ее исходное состояние. Эти триггерные импульсы называются «запуск» и «перезапуск».

Помимо бистабильного мультивибратора, существуют также моностабильный мультивибратор, который имеет только одно устойчивое состояние и астабильный мультивибратор, который не имеет устойчивого состояния.

Трансмиссия